Année académique :2021/2022

Classe: TS2

NOMBRES COMPLEXES

✓ Partie 1: Généralités

Exercice 1:

Pour chacune des questions suivantes, une seule réponse est correcte. Choisir la bonne réponse

1. Soit z un nombre complexe non nul dont un argument est $\frac{\pi}{6}$. Alors un argument de $i\bar{z}$ est :

2. Soit z un nombre complexe de module 2 alors le conjugué \bar{z} de z est :

a) $\frac{\sqrt{2}}{}$

3. Un argument du nombre complexe $(1+i)^{2019}$ est:

 $b) - \frac{\pi}{2}$

4. L'écriture trigonométrique du nombre complexe : $z = -3 \left[cos \left(\frac{-2\pi}{3} \right) + i sin \left(\frac{-2\pi}{3} \right) \right]$ est :

a) $z = -3\left[\cos\left(\frac{-2\pi}{3}\right) + i\sin\left(\frac{-2\pi}{3}\right)\right]$; b) $z = -3\left[\cos\left(\frac{2\pi}{3}\right) - i\sin\left(\frac{2\pi}{3}\right)\right]$; c) $z = 3\left[\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right]$

Exercice 2:

Dans chacun des cas suivants donner le module et un argument de z. Puis donner sa forme trigonométrique et sa forme exponentielle. $\alpha \in [0; \pi]$

a) $z = -\sqrt{3} + i$; b) z = 1 - i; c) $z = 2(-\sqrt{3} + i)$; d) $z = \frac{-\sqrt{3} + i}{(1 - i)^8}$

e) $z = (-\sqrt{3} + i)(1 - i)^3$; f) $z = -\sin\alpha + 1\cos\alpha$

g) $z = 1 + \cos\alpha + i\sin\alpha$; h) $z = \frac{1 - \cos\alpha - i\sin\alpha}{1 + \cos\alpha - i\sin\alpha}$

Exercice 3:

On considère les complexes : $z_1 = \sqrt{2} + i\sqrt{6}$, $z_2 = 2 + 2i$ et $Z = \frac{z_1}{z_2}$.

1) Ecrire Z sous forme algébrique.

2) Calculer le module et un argument de chacun des complexes z_1 et z_2 .

3) En déduire:

a) |Z| et arg(Z).

b) Les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

4) Montrer que Z^{12} est réel et que Z^{6} est imaginaire pur.

5) Ecrire Z²⁰¹⁷ sous forme algébrique.

Exercice 4:

Soit le complexe : $Z = (1 + i)^{2015} + (1 - i)^{2015}$.

1) Montrer que Z est réel sans le calculer.

2) On considère les complexes $z_1=(1+i)^{2015}$ et $z_2=(1-i)^{2015}$.

a) Donner les écritures exponentielles de z_1 et z_2 .

b) En déduire la valeur de Z.

Année académique :2021/2022

Classe: TS2

NOMBRES COMPLEXES

Exercice 5:

On considère les complexes : $z_1 = -1 - i$ et $z_2 = \frac{1}{2} + i \frac{\sqrt{3}}{2}$.

- 1) Donner les formes trigonométriques de z_1 et z_2 .
- 2) Soit le complexe $Z = \frac{z_1}{z_2}$.
- a) Donner l'écriture algébrique et l'écriture trigonométrique de Z.
- b) En déduire les valeurs exactes de $\cos\left(\frac{11\pi}{12}\right)$ et $\sin\left(\frac{11\pi}{12}\right)$.
- 3) Déterminer le plus petit entier naturel n_0 tel que : Z^{n_0} soit réel.

Exercice 6:

On considère le complexe : $z = (1 + \sqrt{3}) + i(-1 + \sqrt{3})$.

- 1) Calculer z².
- 2) a) Donner la forme trigonométrique de z².
 - b) En déduire le module et un argument des complexes : z ; \bar{z} et $\frac{i}{z}$.
- 3) Déterminer l'écriture algébrique de z⁶.

Exercice 7:

Soit z un nombre complexe différent de -3i. On considère le nombre complexe Z défini par :

$$Z = \frac{2iz-1}{3-iz}$$
 . Soit A le point d'affixe $-3i$

Déterminer analytiquement puis géométrique l'ensemble des points M(z) tels que :

a)
$$|Z| = 2$$
 ; b) $|Z| = 4$.

Exercice 8:

Soit z un nombre complexe différent de 1. On considère le nombre complexe Z défini par :

$$Z = \frac{z+1}{z-1}$$
. Soient A(1); B(-1); M(z) et M'(Z).

- 1. Interpréter géométrique un argument de Z.
- 2. Déterminer et représenter l'ensemble des points M(z) tel que :
 - a) Z est réel ; b) Z est imaginaire pur.

✓ Partie 2 : Résolution d'équations dans C

Exercice 1:

On donne dans \mathbb{C} l'équation (E): $z^4 = -7 - 24i$

- 1. Vérifier que : 2 i est solution de (E)
- 2. Résoudre (E).

NOMBRES COMPLEXES

Année académique :2021/2022

Classe: TS2

Exercice 2:

On considère la fonction polynôme P à variable complexe définie par :

$$P(z) = z^3 - (6+6i)z^2 + 21iz + 15 - 5i$$

- 1) Calculer P(i).
- 2) En déduire que $P(z) = (z i)(az^2 + bz + c)$, avec a, b et c des complexes que l'on déterminera
- 3) Résoudre dans \mathbb{C} l'équation $z^2 (6+5i)z + 5 + 15i = 0$; en déduire la résolution de l'équation : P(z) = 0
- 4) Soient A, B et C des points du plan d'affixes respectives : $\alpha = i$, $\beta = 3 + i$ et $\gamma = 3 i$
 - a) Placer les points A, B et C dans un repère complexe $(0; \vec{u}, \vec{v})$.

Donner le module et un argument du nombre complexe $\frac{\gamma - \beta}{\alpha - \beta}$.

- 5°) On considère l'équation suivante (E) : $z^3 = 18 + 26i$.
 - a) Montrer que β est solution de (E).
 - b) En déduire l'ensemble des solutions de (E).

Exercice 3:

- 1. Montrer que : $(-1+i)^3 = 2+2i$
- 2. .a Résoudre dans \mathbb{C} l'équation : $Z^3 = 1$.

(On donnera les solutions sous forme trigonométrique et sous forme algébrique).

b. Déduire des questions précédentes les solutions dans de l'équation (E) : $z^3 = 2 + 2i$.

On remarquera que (E) est équivalente à : $\left(\frac{z}{-1+i}\right)^3 = 1$

- 3.a. Ecrire -1 + i sous forme trigonométrique.
 - b. En déduire les arguments des solutions de (E).
- 3. En déduire des questions 2b) et 3a) les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

Exercice 4:

On considère le polynôme complexe défini par : $P(z) = 9z^4 - 24z^3 + 50z^2 - 24z + 41$

- 1. Montrer que P admet deux racines imaginaires z_1 et z_2 que l'on déterminera.
- 2. Déterminer le polynôme Q tel que ; $P(z) = (z^2 + 1)Q(z)$.
- 3. En déduire les autres racines de P(z).
- 4. Le plan complexe rapporté à un repère orthonormé (O; \vec{u} , \vec{v}) (unite 1cm)

On désigne par A, B, C et D les points d'affixes respectives : $z_A = -i$, $z_B = i$, $z_C = \frac{4}{3} + \frac{5}{3}i$ et $z_D = \frac{4}{3} - \frac{5}{3}i$.

- a. Placer les points A, B, C et D.
- b. Montrer que : $\frac{Z_C Z_A}{Z_D Z_A} \in iIR$ et que : $\frac{Z_C Z_B}{Z_D Z_B} \in iIR$
- c. En déduire la nature exacte des triangles ACD et CBD.
- d. Démontrer que les points A, B, C et D sont sur un cercle dont on précisera son centre et son rayon.

NOMBRES COMPLEXES

✓ Partie 3 : Complexe et Transformations planes

Exercice 1:

- 1. Déterminer l'écriture complexe de la similitude directe f vérifiant :
- a. f a pour rapport k=2 angle $\theta=\frac{\pi}{4}$ et transforme A en B avec $z_A=\sqrt{2}$ et $z_B=4+i\sqrt{2}$.
- b. f a pour centre le point I(1+i) de rapport k=3 et d'angle $-\frac{\pi}{3}$.
- 2. Déterminer la nature et les éléments caractéristiques de la similitude plane directe vérifiant : f(A) = B et f(C) = D
- a. $z_A=i$, $z_B=-4-i$, $z_C=1-i$ et $z_D=-1-2i$
- b. $z_A = 3 2i$, $z_B = -3 2i$, $z_C = -3i$ et $z_D = 3$

Exercice 2:

Soit la transformation plane f d'écriture complexe :+

$$z' = \alpha^2 z + 1 + \alpha$$
; avec $\alpha \in \mathbb{C}$.

Déterminer les complexes α dans les cas ci-dessous

- a) f est une translation.
- b) f est une rotation d'angle $\theta = -\frac{\pi}{2}$.
- c) f est l'homothétie de rapport k = -2.
- Déterminer la nature et les éléments caractéristiques de f dans chacun des cas suivants :
- a) $\alpha=1-i$; b) $\alpha=\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}$; c) $\alpha=-1$; d) $\alpha=-i\sqrt{3}$

Exercice 3:

- A) Pour tout nombre complexe on note : $f(z) = z^5 + 2z^4 + 2z^3 z^2 2z 2z$
 - 1. Déterminer le polynôme Q tel que pour tout complexe z on a : $f(z) = (z^3 1)Q(z)$,
 - 2. Résoudre dans C l'équation (E) : f(z) = 0.
 - 3. Ecrire les solutions de (E) sous forme trigonométrique puis représenter leur images dans le un repère orthonormé (O; \overrightarrow{u} , \overrightarrow{v}).
- B) Considérons les points A, B, C et D du plan P tel que :

$$A(\frac{-1+i\sqrt{3}}{2})$$
; $B(-1+i)$; $C(-1-i)$ et $D(\frac{-1-i\sqrt{3}}{2})$

- 1. Quelle est la nature du quadrilatère ABCD?
- 2. Soit r la rotation de centre F(1) qui transforme A en D. Déterminer l'écriture complexe de r.
- 3. Quelle est la nature du triangle FAD?
- 4. Déterminer l'affixe du centre du cercle circonscrit au triangle FAD.
- 5. On pose : $u_n = (z_A)^n$, avec n un entier naturel non nul et z_A est l'affixe du point A. Déterminer la valeur minimale de n pour que u_n soit réel.
- **6.** Donner la forme algébrique de u₂₀₁₉.

NOMBRES COMPLEXES

Année académique :2021/2022

Classe: TS2

Exercice 4:

- 1) On donne $z_0 = 1 i\sqrt{3}$
- a) Donner une écriture trigonométrique de z_0 .
- b) Montrer que : $z_0^4 = -8 + 8i\sqrt{3}$.
- c) Résoudre dans \mathbb{C} , l'équation $z^4 = 1$.
- d) En déduire les solutions de l'équation (E) : $z^4 = -8 + 8i\sqrt{3}$ sous la forme algébrique.
- 2) Dans le plan complexe muni d'un repère $(0; \overrightarrow{e_1}, \overrightarrow{e_2})$, unité graphique 2 cm, on considère les points
- A, B, C et D d'affixes respectives : $z_A = 1 i\sqrt{3}$, $z_B = -1 + i\sqrt{3}$, $z_C = \sqrt{3} + i$ et $z_D = -\sqrt{3} i$.
 - a) Placer ces points.
 - b) Donner une écriture complexe de la rotation R de centre O et d'angle $\frac{\pi}{2}$.
 - c) Vérifier que : R(A) = C, R(C) = B et R(B) = D.
 - d) En déduire que les points *A*, *B*, *C* et *D* sont situés sur un même cercle dont on précisera le centre et le rayon.
- 3) Soit (S) la transformation complexe définie par : z' = (1 i)z + 2i
 - a) Donner la nature et précises les éléments caractéristiques de (S).
 - b) En déduire l'écriture complexe de $S \circ S^{-1}$.

Exercice 5:

- 1) Calculer $Z=\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\right)^2$. En déduire les solutions dans $\mathbb C$ de l'équation : (E): $z^2-i=0$.
- 2) On considère le polynôme $P(z) = z^3 + z^2 iz i$ où $z \in \mathbb{C}$.
 - a) Démontrer que l'équation P(z) = 0 admet une solution réelle z_0 que l'on déterminera.
- b) Résoudre dans \mathbb{C} l'équation P(z) = 0; on note z_1 et z_2 les autres solutions
- 3) Le plan complexe est muni d'un R.O.N (0; \vec{u} , \vec{v}) d'unité graphique2 cm. On considère les points A,B et C d'affixes $z_A = \frac{\sqrt{2}}{2}(1+i)$; $z_B = -\frac{\sqrt{2}}{2}(1+i)$ et $z_C = -1$.
 - a) Donner la forme exponentielle de z_A et de z_B .
- b) Placer avec précision les points A, B et C dans le repère.
- 4) Soit D le symétrique du point A par rapport à l'axe des réels.
 - a) Déterminer l'affixe z_D du point D sous forme algébrique.

Exercice 6:

Le plan est muni d'un repère orthonormé direct $(0; \vec{u}, \vec{v})$.

On considère la transformation du plan f qui a tout point M(x, y) associe le point M'(x', y') définie

par :
$$\begin{cases} x' = x - y + 3 \\ y' = x + y - 1 \end{cases}$$

- 1. Déterminer l'ensemble des points invariant par f.
- 2. Déterminer l'image par f des points A(1+2i) et B(-1,2).
- 3. Déterminer l'antécédent par f du point C(1 + 2i)
- 4. Déterminer l'image par f de la droite (D): y = 2x + 1
- 5. Déterminer l'écriture complexe de f. En déduire la nature et les éléments caractéristiques de f.